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Abstract

Although the volatility of house prices is often ascribed to demand-side factors, constraints
on housing supply have important and little-studied implications for housing dynamics. I il-
lustrate the strong relationship in city-level data between the volatility of house prices and the
regulation of new housing supply. I then employ a dynamic structural model of housing invest-
ment to estimate the effect of supply constraints on both the level of new construction and the
responsiveness of investment to house prices. I find that supply constraints increase volatility
through two channels: First, regulation lowers the elasticity of new housing supply by increas-
ing lags in the permit process and adding to the cost of supplying new houses on the margin.
Second, geographic limitations on the area available for building houses, such as steep slopes
and water bodies, lead to less investment on average relative to the size of the existing housing
stock, leaving less scope for the supply response to attenuate the effects of a demand shock. My
estimates and simulations confirm that regulation and geographic constraints play critical and
complementary roles in decreasing the responsiveness of investment to demand shocks, which
in turn amplifies house price volatility.

1 Introduction

Recent experience in the United States has made painfully clear the importance of housing market

volatility. Housing spending constitutes about 25 percent of the median household’s total income,

and housing wealth makes up 55 percent of the median household’s net worth.1 Large swings

in the price of housing thus have important microeconomic effects: Increases benefit homeowners

through expansion of paper wealth and relaxed borrowing constraints, while declines tighten those

constraints and may leave households “underwater” on their mortgages and unable or unwilling to

∗I am deeply grateful to Todd Sinai, Joe Gyourko, Fernando Ferreira, and Katja Seim for their guidance and
encouragement. I am also indebted to Kate Bowers, Daniel Cooper, Alex Gelber, Adam Isen, David Lebow, David
Rothschild, Albert Saiz, Ben Shiller, Holger Sieg, Jeremy Tobacman, Justin Wolfers, and Maisy Wong for helpful
comments and suggestions. The views I express in this paper are not necessarily those of the Board of Governors or
its staff. All errors are my own.
†Board of Governors of the Federal Reserve System. E-mail: andrew.d.paciorek@frb.gov
1Calculated using 2007 data from the Panel Study of Income Dynamics.
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move. The macro implications of housing dynamics, meanwhile, are more important today than

ever, following the largest residential real estate boom and bust in at least half a century, as well

as the subsequent recession.

As in most fields of economics, understanding the housing market means understanding both

demand and supply. While the literature on housing demand is voluminous, progress in under-

standing the supply side has been much slower (DiPasquale 1999). But recent contributions to

the literature on housing supply have emphasized the importance of construction costs, particu-

larly the costs of complying with zoning and other regulatory constraints, and the degree to which

investment in the housing stock responds to house prices.

In this paper I expand on the existing literature by focusing on the role of regulation and other

supply constraints in amplifying house price volatility, as well as raising price levels. Intuitively,

when supply is unable to keep pace with demand shocks quickly and cheaply, more of the shocks

carry through into prices. In contrast with previous work, I explicitly trace out the channels by

which supply constraints affect the housing market and employ a dynamic structural model to

estimate the effect of regulation and land availability on costs. I find that permitting lags and

marginal costs — costs that rise with each additional house built in a given year — explain much

of the observable differences in elasticity across markets. Differences in price volatility, in turn,

depend on both the elasticity of new housing supply as well as the average level of new supply

relative to the size of the existing capital stock, which is determined in part by the quantity of land

available for development.

Such differences in volatility can be stark, as may be seen in figures 1 and 2: The mean price

of a home in the San Francisco area was about three times as high as in Atlanta between 1984 and

2008. Yet the housing stock of San Francisco grew by an average of just 0.5 percentage point per

year, while that of Atlanta grew by 3.5 percentage points per year. Moreover, price volatility in

San Francisco was far greater than in Atlanta: Even apart from the trend, the standard deviation

of house prices was about twice as high relative to the mean in San Francisco. Homeowners who

purchased in San Francisco thus not only paid more on average, they faced far greater uncertainty

about the capital gain (or loss) they could expect to realize when they moved to a new house or
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new city.

Several papers have argued that observed differences in construction and house price levels

across metropolitan areas are due to differences in regulation and community opposition to new

construction, rather than shortages of land or higher building costs (Glaeser, Gyourko and Saks

2005a, Quigley and Raphael 2005, Mayer and Somerville 2000). Areas with strong demand and

tightly constrained supply experience rising prices and incomes but little construction, becoming

“superstar cities” like San Francisco and Boston (Gyourko, Mayer and Sinai 2006). Other cities,

such as Atlanta and Phoenix, are also in high demand but impose comparatively few regulations

on supply, resulting in substantial expansion of the housing stock and (until recently) muted price

changes. Geographic constraints, particularly the presence of steep hills and water, also play a key

role in determining housing supply (Saiz 2010).

In contrast with most earlier work, I focus on the relationship between supply constraints and

house price volatility, rather than price or investment levels. The strong statistical association

between regulation and volatility is easy to see in the data. Figure 3 shows a scatter plot and

smoothing spline of within-city house price volatility against the Wharton Residential Land Use

Regulatory Index (WRLURI), with each dot representing a single metropolitan statistical area

(MSA).2 A simple regression of price volatility on the regulation measure indicates that a 1 standard

deviation increase in regulation across cities is associated with about a 30 percent increase in

volatility.

This paper explores the causal mechanisms underlying this empirical relationship.3 While the

empirical literature has convincingly demonstrated that housing supply conditions can vary widely

across regions, housing supply models have remained mostly ad hoc. Econometric models relating

supply to prices and other fundamentals have imposed no theoretical structure on these relation-

ships, leading to confusion even over relatively simple questions such as whether investment should

2See below for details on the data and the construction of these measures.
3Using similar data to mine, Huang and Tang (2010) examine the correlation between supply constraints, including

both regulation and land availability, and the sizes of cities’ housing booms and busts from 2000 to 2009. They argue
that more constrained cities experienced larger price run-ups from 2000 to 2006 and larger price declines in the
subsequent period. Although this finding generally accords with my own, I do not focus exclusively on the most
recent cycle, precisely because some of the largest price swings occurred in relatively unconstrained cities like Las
Vegas, which is hard to square with a supply-side explanation alone (Glaeser, Gyourko and Saiz 2008).
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relate to price levels or changes (Mayer and Somerville 2000). Through the careful application of

theory and econometrics to data on a panel of cities, I make a series of contributions.

Building on preexisting models of investment in durable goods, I develop a dynamic theory of

housing supply that is grounded in the optimization problem of owners of undeveloped land. These

owners must decide when to build new houses, taking into account currently available information

and their rational expectations about future prices. Fluctuations in prices are driven by demand

shocks, such as changes in wages or immigration patterns. The effect of these shocks on both prices

and investment differs depending on the supply environment, such as the amount of land available,

the differential costs of building, and the amount of time needed to build.

The model is explicitly designed so that the parameters can be estimated, and my primary con-

tribution is empirical. I estimate the structural parameters of the model at the level of metropolitan

areas, using data on house prices and construction. These cost parameters vary with observed lev-

els of housing regulation, particularly regulatory permitting and construction lags, as well as the

quantity of available land. In doing so, I deal with a series of empirical challenges. First, by starting

with a microeconomic optimization problem, I am able to properly specify an estimating equation

that relates prices, new housing investment, and expectations about the future. Because develop-

ment lags vary across the cities in my sample, I have to carefully model the role of expectations and

their effect on my estimates. Finally, I use demand-side variables that are plausibly uncorrelated

with supply shocks and forecast errors to identify the supply-side parameters.

I find that regulatory costs of all kinds can add tens of thousands of dollars to the cost of

building an additional house on the margin in more regulated cities relative to less regulated ones.

Importantly, while regulations that raise the average cost of new housing or reduce the amount of

available land can lead to higher house prices, it is marginal costs — which rise with each additional

house built in a given year — and construction lags that affect the elasticity of supply.4 Regulatory-

induced lags have particularly large effects, both by adding costs on the margin and by forcing

landowners and developers to forecast further into the future when planning new development,

4Both lags and increasing marginal costs of this kind could result from a variety of types of regulation, from annual
limits on building permits to minimum lot size requirements to the discretionary actions of homeowners’ associations
and local government.
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thus lowering the correlation between actual prices and new supply.

The elasticity of supply, by definition, relates percentage changes in investment to percentage

changes in price. I show that the mean level of investment also matters for volatility, since even

large changes in new construction cannot relieve shocks to demand if there is little construction

relative to the size of the existing capital stock of homes. The level of investment is determined in

part by the availability of land, after accounting for geographic constraints.

Using the estimated cost parameters, I solve and simulate the model to explore the importance

of various constraints. I find that both more regulation and less available land substantially increase

the variance of house prices. The model predicts sizable differences in volatility across metropolitan

areas, such as between San Francisco, a highly regulated city that is surrounded by mountains and

ocean, and Atlanta, which is both comparatively lightly regulated and surrounded by flat land.

In the next section, I discuss the basics of supply and demand in the housing market before laying

out my dynamic model of housing supply. In section 4 I describe the data used for estimation,

including the exogenous demand shifters used to identify the supply side. Sections 5 through 7

detail the precise estimation techniques, use reduced-form regressions to illustrate the patterns in

the data, and then present the structural estimates. In section 8, I use simulations to show how

the estimated supply parameters carry through into volatility. The final section discusses caveats

and concludes.

2 The Basics of Housing Supply and Demand

Before introducing any notation, it is worth establishing the basics of an equilibrium model of the

housing market via a simple graphical representation. Figures 5 and 6 show the demand and supply

sides, respectively. In figure 5, a downward-sloping demand curve relates the implicit rental cost of

owning a house in a given period to the quantity of housing demanded at that rent. In the short

run, the housing capital stock is fixed and is thus represented by a vertical line in the figure.

Moving to the supply side in figure 6, we see an upward sloping supply curve relating the

expectation of the next period’s price to the investment that will come online in that period, under

the maintained assumption that it takes one period to build houses. On the margin, the cost of
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building an additional house (C (It)) must be equal to the expected price. As the expected future

price rises, investment rises in step. The model is closed by positing a user cost relation — including

interest rates, depreciation, and the full path of expected future rents — between housing rents

and prices, as well as a transition equation for the capital stock.

An unexpected and permanent increase in demand in period t is represented by an upward

shift in the demand curve. In the short run, supply is fixed, so the implicit rental cost of housing

rises. The expected future price increases relative to the cost of construction, generating additional

investment until the price falls back and the system returns to its steady state. When marginal

costs are higher or delays longer, the supply curve is more steeply sloped, so the investment response

is lessened and the return to steady state takes longer. This process underpins my results.

Price volatility in this model will depend both on the slope of the supply curve, which is the

reciprocal of the elasticity, and the magnitude of investment relative to the capital stock. Because

implicit rent is determined by the overall size of the capital stock, even large percent changes in

investment in response to changes in price will do little to damp demand shocks if the level of

investment is small relative to the capital stock. Consequently, costs that do not vary with the

level of investment (fixed costs), which determine the height of the supply curve, also matter for

volatility.

Although there is a time lag in the model, the supply side is myopic in the sense that the expec-

tation of the next period’s price translates directly into a level of investment, with no comparison

by landowners of expected prices in different periods. Generalizing this world to a fully dynamic

one with forward-looking agents requires explicitly modeling the choice of when to develop, which

I take up in the next section.

3 A Dynamic Structural Model of Housing Markets

In formulating a model of housing supply, it is valuable to consider some of the special features of

housing that differentiate the housing market from that of other goods or services. First, a house

is not merely durable but extremely so. Although millions of new houses are built in a typical

year, excepting the current bust, the median age of housing units in the United States is about 35
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years.5 Thanks to this durability, housing both provides a flow of services and serves as a long-term

investment, making forward-looking behavior imperative for homebuyers.

Second, the major input into housing is the land on which it is built, which is in fixed supply

within a radius around a given location. This is not to say that there is a shortage of land in the

world. But empty land, frequently on the outskirts of major cities, is poorly substitutable for land

in desirable locations. Landowners thus have some market power, unlike purveyors of reproducible

widgets, and can time their decision to sell or develop the land. This timing decision forms the

core of my dynamic model of housing supply, and it differentiates my model from most previous

approaches in the literature.6

Since I employ data on house prices and investment at the metropolitan level, my model focuses

on cities, indexed by j, which I define as infinitely divisible areas of measure Aj . The capital stock

of housing in j at time t is denoted Kj,t, and new investment is Ij,t, with each period’s capital stock

equal to the depreciated last period capital stock plus investment:

Kj,t = Kj,t−1 (1− δj) + Ij,t.

Each unit of housing takes up one unit of land, so the stock of undeveloped land is Aj − Kj,t.

Houses do not differ in quality and are perfectly substitutable.7 The population of the city, nj,t,

is exogenous and evolves deterministically. Endogenizing nj,t would require modeling households’

choice among multiple cities, which is beyond the scope of this paper. Changes in population are an

important source of local housing demand, but for simplicity I incorporate unexpected population

shifts in the demand shock εDj,t.

52007 American Housing Survey.
6Murphy (2010) is the major exception. Unlike Murphy (2010), who estimates cost parameters using microdata

from a single metropolitan area, I focus on observable constraints on the supply side using variation at the metropolitan
level.

7The permits data that I use contain no information on housing quality, which is why the model ignores the
margin of housing quality in the investment decision.
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3.1 Demand

Since I focus primarily on modeling and estimating the responses of cities with different supply

constraints to demand shocks, I keep the demand side of the model relatively simple, in line with

the graphical version discussed above and displayed in figure 5. The inverse demand for housing in

city j at time t is given by

log (Rj,t) = φ+ φK log (Kj,t) + φn log (nj,t) + εDj,t, (1)

where Rj,t is the rent paid implicitly by homeowners or explicitly by renters in each period. With

φK negative and φn positive, the amount of housing desired by the exogenously given population

nj,t is inversely proportional to the rent; that is, the demand curve is downward-sloping. The

demand shock, εDj,t, drives the dynamics of the model.

The price of a house is equal to the present value of current and expected future rent. Taking

into account property taxes (ωj,t), the mortgage interest rate (rt) and their deductibility from

income taxes (τj,t), as well as a risk premium γ and depreciation δj , we are left with a standard

formula for the user cost of housing (Poterba 1984, Himmelberg, Mayer and Sinai 2005):8

Rj,t = Pj,t (rt + ωj,t − τj,t (rt + ωj,t) + δj + γj,t − Et [gj,t+1]) . (2)

Here Et [gj,t+1] denotes the expectation of growth rate in house prices over the next year taken

with respect to all relevant information at time t; in other words, the model relies on rational

expectations. The primary difficulty in calculating the user cost is that expectations (and the risk

premium) are unobserved by the econometrician; one advantage of modeling housing supply is that

it allows me to endogenize expectations in a principled way.

8Using the mortgage interest rate here implies that houses are entirely financed by debt, with no down payment,
but the results are not sensitive to the choice of interest rate.

8



3.2 Supply

Owners of undeveloped land, whom I index by i, choose whether or not to develop their land in each

period.9 I avoid explicitly modeling the market for land or the production function for structures

by assuming that the construction industry is perfectly competitive, so that development risk is

borne by the landowner/developer, who also receives any economic profits. In practice, housing

developers buy or option land and undertake much of the risk involved in the process, but I elide

the distinction between developers and original landowners because my data do not allow me to

distinguish between them empirically.

The development and construction of a house in j started at t − Lj takes Lj periods and is

irreversible once begun. A building permit must be acquired one year before the house is finished;

this is approximately the amount of time that a single-family building project takes to go from

permit to start to completion, according to data from the Census Bureau. Upon completion, the

landowner/developer sells it and receives the price of housing at that time (Pj,t) less the fixed labor,

materials, and regulatory costs associated with building the structure (Cj,t). I assume all fixed per

unit costs of construction are paid on completion but are known with certainty at the time the

decision is made.

In addition to the fixed costs, a coherent model requires costs in a given area to increase on

the margin as more investment is undertaken in any period; otherwise all parcel owners would

want to develop at the same time. Along with lags in the permitting process, which I discuss

below, the marginal cost of constructing an additional unit is one of the two primary channels by

which regulation can affect dynamics. I incorporate increasing marginal costs by attributing to

each landowner i a random shock to the cost of building χi,j,t−Lj . Since this is the only parcel-

level heterogeneity in the model, I can sort the landowners according to this shock without loss of

generality. Within a given city and time period, these cost shocks follow a mean-zero cumulative

distribution F−1
j

(
Ij,t

Aj−Kj,t−1

)
plus an overall mean cost shifter εSj,t. The scale parameter of this

distribution σχj varies across cities, allowing different regulatory regimes to have disparate effects

9We can extend the model to cover multi-unit dwellings by reinterpreting Aj as the total number of houses that
would exist if all land were developed to some maximum feasible density, which is what I do in the empirics, as
described in section 4 below.
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on the cost of building on the margin. The mean cost εSj,t affects all landowners in j equally and

serves as a city-level supply shock.

The cost of construction may also vary with the amount of undeveloped land that remains

available in the city. Costs are likely to increase as the city’s best land is developed, and the

gradient may vary across cities either due to regulatory or geographic constraints (Saiz 2010). Let

ηj (Kj,t−1, Aj) denote a cost function that depends on the level of the capital stock relative to the

total land area of the city that is not covered by water or too steeply sloped to build on.10

Since construction always takes at least one period, landowners must form expectations about

the path of house prices in order to decide whether to develop a given parcel now or wait. If a

landowner chooses not to build on a given parcel at t, she will face precisely the same choice one

period in the future, after receiving any income from the current use of the land (Ūj,t), such as

farming or the operation of a parking lot.

The state space (Sj,t) comprises all information known at t, including the evolution of the

demand shocks up to t and the capital stock Lj − 1 periods in the future. The future capital stock

up to that point is known with certainty because the investment decisions have already been made

in periods prior to t. In the simplest case, in which the demand and supply shocks follow first-order

Markov processes, the state space contains the capital stock and current shock realizations:

Sj,t−Lj =
{
Kt−1, ε

D
j,t−Lj , ε

S
j,t−Lj

}
.

Using the above notation, a landowner’s expected time t value from building on parcel i is

V B
j,t

(
Sj,t−Lj

)
− χi,j,t−Lj =βLj

(
E
[
logPj,t|Sj,t−Lj

]
− logCj,t

)
− ηj (Kj,t−1, Aj)

− εSj,t−Lj − χi,j,t−Lj .

I specify the price and cost terms in logs because it is an empirical regularity that log investment

10Note that I do not incorporate these costs as persistent heterogeneity at the parcel level, which would be a
more literal interpretation of the role of geography. Cities typically develop first on flat land in desirable locations
before growing into less amenable locations, such as hills or wetlands. Unfortunately, a model of housing activity at
the metropolitan level is intractable with both individual-level shocks and persistent individual heterogeneity, and
the data I use in this paper would not allow me to estimate such a model properly in any case. Nevertheless, my
specification should do a good job of capturing costs that increase as the city is “built out”.

10



increases linearly with log price, whether or not expectations about the future are taken into ac-

count.11 It is thus unsurprising that most previous research on housing supply has specified a log-log

relationship between investment and price, and following that tradition allows for straightforward

comparison. Since I have no a priori theoretical understanding about the cost terms, specifically

the functional form of η (·) or the distribution of χ, it seems reasonable to have them relate linearly

to log price rather than the price level.

Alternatively, the flow value from not building plus the expected value of the option to build

(or not) tomorrow is

V N
j,t

(
Sj,t−Lj

)
= βLj Ūj,t + βE

[
max

{
V B
j,t+1 − χi,j,t−Lj , V N

j,t+1

}
|Sj,t−Lj

]
.

There is an equivalence between heterogeneity in fixed costs and in the value of the outside option,

since a higher outside option functions exactly like an increase in the fixed cost of construction.

I attribute all of this heterogeneity to costs, with ηj (·) capturing the increasing return from the

outside option as land becomes scarce and εSj,t−Lj incorporating any unobservable shocks to the

outside option value.

Since χi,j,t−Lj follows a continuous probability distribution with full support over the real line

and the total land area is divided among infinitely many small parcels, some parcels will be devel-

oped in every city and period. That is, investment Ij,t must be strictly positive, so that

Kj,t > Kj,t−1 (1− δj) .

This is a reasonable requirement for MSAs taken as a whole, since even cities in secular decline,

like Detroit, have new construction in every period.12 Thanks to the lag, each parcel owner must

decide in period t−Lj whether to develop her parcel for delivery at t. Given the various continuity

assumptions, there must be a parcel owner (i∗) who is precisely indifferent between building and

11I have estimated flexibly nonlinear versions of the model using generalized additive modeling techniques (Hastie
and Tibshirani 1990, Wood 2006) and do not find substantial departures from the specification described here.

12For established neighborhoods, which may see no construction for years at a time, a different formulation is
required (Paciorek 2011). In particular, when investment is zero, there is in general no parcel for which the value of
building and not building are equal.
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not building. For this owner,

V B
j,t − χi∗,j,t−Lj = V N

j,t

or

βLj
(
E
[
logPj,t|Sj,t−Lj

]
− logCj,t

)
− ηj (Kj,t−1, Aj)− χi,j,t−Lj − εSj,t−Lj

= βLj Ūj,t + βE
[
max

{
V B
j,t+1 − χi,j,t+1, V

N
j,t+1

}
|Sj,t−Lj

]
,

(3)

where F−1
j

(
Ij,t

Aj−Kj,t−1

)
= χi∗,j,t−Lj because the owner is on the margin. This equates the value of

building on the marginal parcel today to the discounted expected value of having the same choice

tomorrow, plus the current income payment.

3.3 Empirical Implementation

My approach to estimating the supply side of the housing market follows the basic insight of Hansen

and Singleton (1982), who point out that it is possible to estimate an equation involving (rational)

expectations without fully solving the model to find a representation of endogenous variables — in

my case, house prices — in terms of lagged endogenous variables and contemporaneous and lagged

exogenous variables. To estimate equation 3 using a standard panel of MSA-level house prices and

investment — described in detail below — I make a series of additional simplifying assumptions,

some of which can be relaxed later. First, the discount factor β is known to the econometrician

a priori. Second, the supply shocks εSj,t−Lj are serially uncorrelated, an assumption that can be

tested. Finally, ηj (·) and F−1
j

(
Ij,t

Aj−Kj,t−1

)
have known functional forms. Specifically, I assume

that ηj (Kj,t, Aj) = σηj
Kj,t
Aj

, which is essentially the density of housing over a fixed area, and that

χi,j,t−Lj
iid∼ logistic

(
0, σχj

)
, which means F−1

j

(
Ij,t

Aj−Kj,t−1

)
= σχj log

(
Ij,t

Aj−Kj,t−1

1−
Ij,t

Aj−Kj,t−1

)
. Given these

assumptions, I can rewrite equation 3 as follows:

βLj
(
E
[
logPj,t|Sj,t−Lj

]
− logCj,t

)
− σηj

Kj,t

Aj
− σχj log

 Ij,t
Aj−Kj,t−1

1− Ij,t
Aj−Kj,t−1

− εSj,t−Lj
= βLj Ūj,t + βE

[
σχj log

(
exp

(
V B
i,j,t+1/σ

χ
j

)
+ exp

(
V N
i,j,t+1σ

χ
j

))
|Sj,t−Lj

]
,

(4)
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where the last term applies the fact that χi,j,t−Lj+1 follows an iid logistic distribution, so that the

expectation of the maximum is equal to the logit inclusive value.

To deal with the unobservable value function V N
i,j,t+1 on the right-hand side of equation 4, I em-

ploy the representation theorem of Hotz and Miller (1993), who show that value functions can often

be rewritten as functions of conditional choice probabilities (CCPs), defined as the probabilities

that a given alternative is chosen given the state of the world.13 Applying the logistic distribution

function, we can write the CCP of building next period as

Pr
[
B|Sj,t−Lj+1

]
=

exp
(
V B
i,j,t+1/σ

χ
j

)
exp

(
V B
i,j,t+1/σ

χ
j

)
+ exp

(
V N
i,j,t+1/σ

χ
j

) .
Thanks to the assumption that each city has a continuum of identical small landowners, this

probability of building is precisely equal to
Ij,t+1

Aj−Kj,t , the ratio of parcels actually developed to the

amount of available land. Substituting this into the previous expression, rearranging and taking

the logarithm, we have

log
(

exp
(
V B
i,j,t+1/σ

χ
j

)
+ exp

(
V N
i,j,t+1/σ

χ
j

))
= V B

i,j,t+1/σ
χ
j − log

(
Ij,t+1

Aj −Kj,t

)
.

I can then plug this expression back into equation 4 and expand the V B term to get

βLj
(
E
[
logPj,t − β logPj,t+1|Sj,t−Lj

]
− (logCj,t − β logCj,t+1)

)
− σηj

(
Kj,t−1

Aj
− βKj,t

Aj

)

− σχj

log

 Ij,t
Aj−Kj,t−1

1− Ij,t
Aj−Kj,t−1

− βE [log

(
Ij,t+1

Aj −Kj,t

)
|Sj,t−Lj

]
=βLj Ūj,t + εSj,t−Lj ,

(5)

13The Hotz and Miller (1993) two-step approach to estimating dynamic models is a popular alternative to full-
solution methods (e.g., Keane and Wolpin (1997)) when the model is too complex to repeatedly solve numerically.
See Murphy (2010) and Bishop (2008) for recent examples. A CCP approach is particularly attractive here because
I have already assumed away the unobserved heterogeneity that can make the traditional two-step estimator less
palatable when applied to individual-level data. Arcidiacono and Miller (2008) discuss an extension of the Hotz and
Miller (1993) approach that can incorporate various forms of unobserved heterogeneity.
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where the future supply shock disappears because I assume that the shocks are serially uncorrelated.

A close analogue to this relation would result from writing the problem of a single utility-maximizing

agent for each MSA and deriving an Euler equation.14 Intuitively, this similarity exists because

there are no cross-parcel spillovers, so maximizing the total utility of all parcel owners gives the

same result as maximizing utility individually, apart from some minor technical considerations.

There are two remaining complications that prevent estimation of equation 4. The first is the

presence of unobservable expectations, specifically E
[
logPj,t − β logPj,t+1|Sj,t−Lj

]
. Although I

observe the realized prices, I cannot relate realizations and expectations without making further

assumptions. Following much of the literature on estimating dynamic models such as this one, I as-

sume that agents form expectations rationally, so that the equation νj,t−Lj = (logPj,t − β logPj,t+1)−

Et−Lj [logPj,t − β logPj,t+1] defines a mean-zero forecast error.15 That is, the subjective expecta-

tions of landowners are equal to the conditional expectations.

Applying this definition of νj,t−Lj to equation 5, we get

βLj ((logPj,t − β logPj,t+1)− (logCj,t − β logCj,t+1))

− σηj

(
Kj,t−1

Aj
− βKj,t

Aj

)
− σχj

log

 Ij,t
Aj−Kj,t−1

1− Ij,t
Aj−Kj,t−1

− β log

(
Ij,t+1

Aj −Kj,t

)
+mj +mt

=εSj,t−Lj + νj,t−Lj

(6)

Since the outside value of land is not observed, I have folded βLj Ūj,t into εSj,t−Lj . I also include

fixed effects mj and mt to capture unobservable differences across MSAs and years in the outside

option value and the supply shock. Equation 6 comprises only observable values and explicitly

unobservable error terms, which means it can serve as a basis for estimation, subject to the second

14This is the approach taken by Topel and Rosen (1988), who derive an estimating equation relating prices and
investment at the national level, but dynamics in their model come from adjustment costs rather than the decision
problem of landowners.

15I ignore the error in the forecast of next-period investment (log
(

Ij,t+1

Aj−Kj,t

)
− E

[
log
(

Ij,t+1

Aj−Kj,t

)
|Sj,t−Lj

]
), since

it does not cause any endogeneity complications, because my estimation strategy does not rely on any assumptions
about the orthogonality of the composite investment term and the error, including its own forecast error. The intuitive
explanation is that the composite investment term in these equations is the “dependent variable”, and mean-zero
errors in the dependent variable in a regression — classical measurement error, e.g. — do not lead to endogeneity.
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remaining complication, that of endogeneity.16

There are at least three possible sources of endogeneity in equation 6: First, the unobserved

supply shock εSj,t−Lj will in general be correlated with realized prices in city j at time t, since prices

are determined in equilibrium. Second, the forecast error νj,t−Lj is correlated with the realized value

logPj,t − β logPj,t+1 by construction, since the forecast error is defined to be mean independent of

the expectations. Third, the housing stock in period t includes investment that comes online in t,

leading mechanically to endogeneity of the housing density term.

Dealing with endogeneity requires a set of exogenous demand shifters that are correlated with

the relevant observables but uncorrelated with both the supply shock εSj,t−Lj and the forecast error

νj,t−Lj . I discuss my identification strategy after first detailing my data.

4 Data

Housing markets within the United States are substantially heterogeneous, and supply-side factors

like regulation and geography differ widely across metropolitan areas. This heterogeneity allows

us to examine the effect of these factors on market dynamics. Essentially, each city is a separate

laboratory experiment with different supply and demand conditions.

Table 1 summarizes the data used in this paper. I calculate the house price series using repeat-

sales indices from the Federal Housing Finance Agency (FHFA) deflated by the Consumer Price

Index and pegged to the mean house price in each city from the 2000 Census. This calculation

provides a dollar-valued measure of prices that controls as best as possible for changes in the types

of houses that transact in any given period.17

I specify new housing investment in each MSA and year using a weighted average of the number

of housing permits issued in that area in the previous year and the current year. I calculate the

16In the next section I also specify how I allow the parameter values with j subscripts to vary across MSAs using
observable data.

17The Case-Shiller price indices distributed by Standard & Poor’s, which are the most popular publicly available
alternative to the FHFA series, do not offer sufficient breadth or length for my purposes. There are 20 MSA-level
Case-Shiller indices, which at best go back to only 1987, compared with hundreds of MSAs for the FHFA, many of
which start in the early 1980s or before. Although there are some differences between two sets of indices during the
most recent boom period, the correlations between the two indices over time are still above 0.9 in all metro areas
with data from each and above 0.95 in most.
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weights using Census Bureau data on the time builders take to complete a house after receiving a

building permit. I use permits data rather than starts or completions because the Census Bureau

has a detailed inventory of permits that is finely geographically disaggregated. Although it is

possible to abandon permits before starting, and even to abandon units under construction before

completion, Census Bureau estimates indicate that only around 2 percent of permitted structures

are not built, which is not surprising given the substantial costs involved in preparing for and

acquiring a permit. I also use the permits data to calculate the total stock of housing in each MSA

and year by interpolating from decennial census figures.

I focus on the role of three variables that capture supply constraints. The first is the Whar-

ton Residential Land Use Regulatory Index (WRLURI), which is a measure of local regulatory

constraints compiled from a 2005 survey of municipal officials (Gyourko, Saiz and Summers 2008).

Figure 7 presents example questions from the survey, such as “What is the current length of time

required to complete the review of residential projects in your community?”18 WRLURI is derived

from sub-indices that cover a variety of different regulatory constraints, from financial exactions to

zoning restrictions to delays in the approval process. In the context of the model, WRLURI can be

interpreted as affecting lags, construction cost, and the amount of available land. That said, Gy-

ourko et al. (2008) note that the overall index is most highly correlated with the sub-index related

to average delays, which should capture some or all of the regulatory-induced construction lags.

In the empirical work below, I specifically examine the role of the Approval Delay Index (ADI),

which tries to measure the total delay that regulation imposes on the acquirement of a permit.19

To complement the ADI, I use a version of WRLURI that strips out the ADI as a measure of other

sorts of regulation that directly affect costs and land use.

Figure 4 shows a map of every MSA in my sample, with each color representing one quintile of

WRLURI. Table 2 shows the WRLURI and ADI values for the top 10 MSAs by average population

over the period from 1984 to 2008, as well as San Francisco, with both regulation variables stan-

dardized to have zero mean and a standard deviation of 1. The coloration of the map and most

18See http://real.wharton.upenn.edu/∼gyourko/LandUseSurvey.htm for full details.
19In practice, the development cycle may be even longer, since getting to the permitting stage may require sub-

stantial expenditure and years of negotiation with the relevant authorities (Rybczynski 2007).
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of the values displayed in the table match the standard intuition for which markets are heavily

regulated: Coastal cities (San Francisco, New York) generally display very high levels of regulation

by both measures, while interior cities (Atlanta, Chicago) are typically much less regulated.

The second supply-side variable is a measure of the amount of land in each metropolitan area

that is not available for development because it is steeply sloped, with a gradient greater than 15

percent.20 I calculate the amount of developable land in an MSA by subtracting this measure from

the total land area in square miles of each MSA’s component counties. I further scale this measure

by the number of units per square mile in Manhattan, a particularly densely settled area. This

ratio of the housing stock to this measure of developable “slots”, which I refer to as the density

of housing, can be thought of as the degree to which an MSA is currently developed relative to

Manhattan.21 If costs rise as metropolitan areas “fill up”, perhaps because the available land is

more expensive to build on or because the outside option for the land is more valuable, the density

should capture this effect.

The last measure is an estimate from the RS Means Company of the real cost of constructing

a 2000-square-foot house of average quality, including labor and materials but excluding land and

regulatory costs (Gyourko and Saiz 2006). The RS Means measure should translate into an increase

in fixed construction costs in the model (Cj,t). The RS Means data are available in a panel by MSA

and year, but WRLURI is observed only once for each MSA — in 2005, when the survey was

conducted — while the Saiz measure is essentially time-invariant.

4.1 Demand Shifters

As in any model of market equilibrium, the quasi-differenced price term in equation 6 is likely to

be correlated with the supply shocks precisely because prices are set in equilibrium. Consistently

estimating the supply equation requires one or more variables that are correlated with house prices

and uncorrelated with supply shocks. Given that I allow the supply parameters to differ across

20This is similar to the measure used in Saiz (2010), but for comparability with my other data I calculate the
steeply sloped land area of the component counties of each MSA, rather than using a fixed radius around the central
business district. I thank Albert Saiz for generously providing me with the raw data underlying his estimates.

21This is an arbitrary benchmark, but it is convenient and easily conceptualized. In practice there is no hard cap
on the number of units that can be built in a given MSA; even Manhattan could be built to a much higher density
than it currently is without running into a technological capacity constraint (Glaeser, Gyourko and Saks 2005b).
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MSAs, these exogenous variables must also provide variation across both the time t and MSA j

dimensions.

To get variation in annual housing demand at the MSA level, I rely on two plausibly exogenous

variables. The first (industryj,t) follows Bartik (1991) in imputing shifts in local labor demand

by interacting national-level shifts in industry-specific employment with the average shares (across

time) of employment or compensation that those industries have in particular cities.22 For example,

when auto industry employment and/or compensation decreases nationwide due to a systemic neg-

ative demand shock, the city of Detroit and its surrounding MSA should be particularly negatively

affected. I use annual MSA by industry employment data from the Census Bureau’s County Busi-

ness Patterns (CBP) to form this variable. To ensure that local conditions in particular MSAs with

sizable shares of total national employment in a given industry do not feed back into industryj,t, I

omit city j from the “national” shift in employment when calculating the variable for city j.

To provide a useful check on the employment shift-share variable, which is quite popular in

the literature, I also employ county-level migration data from the IRS, migrationj,t.
23 The idea is

similar in spirit to that behind industryj,t: While inflows and outflows of migrants from MSA j

are likely endogenous with respect to local supply shocks, we can impute overall inflows for MSA j

using the other outflows from MSAs that typically send many migrants to j. For example, outflows

from New York to Philadelphia, Washington, Los Angeles, and other cities change in response to

New York-specific shocks. The sum of these outflows can be used (along with similar sums from

other cities) to impute in-migration to Boston, because Boston typically receives a large share of

its in-migrants from New York.

Both variables are exogenous to local supply shocks under reasonable but non-verifiable condi-

tions. The industryj,t requires that a city’s housing supply shocks are not systematically correlated

with national industry shocks that differentially affect that city. Similarly, migrationj,t will be ex-

ogenous provided that supply shocks in a given city are not correlated with out-migration from

22Bartik-style instruments have been used in a variety of settings to yield exogenous variation in local house prices
and wages. See Saiz (2010), Notowidigdo (2010), Saks (2008), Gallin (2004), and Blanchard and Katz (1992), among
many others.

23This approach mimics that of Saiz (2007), who uses “shift-shares” in international immigration patterns as
exogenous local demand shocks in U.S. cities.
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other cities that usually send lots of migrants to the first city.24

5 Estimation Strategy

As noted above, least squares estimation of equation 6 would yield inconsistent estimates for at least

three reasons: The market price of housing is determined in equilibrium and is therefore endogenous,

the forecast error νj,t will be correlated with time t realizations, and the lagged housing density in

t+ 1 is mechanically correlated with shocks to new investment in t.

The first and third endogeneity concerns can be addressed in a straightforward manner: I use

the employment and migration variables detailed in the previous section to instrument for the

house price term, and I use the first lag of of the quasi-differenced density to instrument for the

contemporaneous value.25 The set of underlying instruments for j at t, which I denote Zj,t−1, is

thus

Zj,t−1 =

{
industryj,t−1,migrationj,t−1,

Kj,t−2

Aj
− βKj,t−1

Aj

}
.

The relationship between the forecast error and endogeneity is more complicated to address.

The standard approach in rational expectations models is to use variables dated at or before the

time the expectations are formed; under the rational expectations assumption anything in the

information set of the agents must be orthogonal to the future forecast errors. It is neither easy nor

desirable to do that in this case, because the true forecast lag Lj differs across cities and may not

be perfectly observable, since the Approval Delay Index (ADI) component of WRLURI likely only

captures differentials in lags caused by regulation, rather than the overall size of the time needed

to plan before building.26 Moreover, the effect of the forecast error resulting from regulation is not

a nuisance in this case but something I am particularly interested in estimating.

Instead, I adopt a hybrid approach, using Zj,t−1 for prices and investment at period t. This

one-year lag roughly corresponds with the time at which permits are issued, and it is the minimum

24As a robustness check, I also estimate the model using a version of the migration variable that includes only city
pairs that are more than a set distance apart, such as 100 miles. See section 7.1.

25Using the lag in this manner requires that the supply shocks be uncorrelated across time, conditional on the
MSA and year fixed effects. I examine this assumption in the section on robustness checks.

26For example, construction projects in all cities may take an additional year to plan before the city-specific approval
delay reported in the ADI.
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amount of time needed for the entire process. Importantly, however, under the rational expectations

assumption these instruments will still be correlated with the forecast error between t − Lj and

t− 1. To simplify the notation, let Ṗj,t = logPj,t − β logPj,t+1. Consider the forecast error νj,t−Lj ,

which is defined as above by

νj,t−Lj = Ṗj,t − Et−Lj
[
Ṗj,t

]
=
(
Ṗj,t − Et−1

[
Ṗj,t

])
−
(
Et−Lj

[
Ṗj,t

]
− Et−1

[
Ṗj,t

])
.

The first term in parentheses in the second line is the forecast error at t − 1 and the second term

is the forecast error between t − Lj and t − 1. Under rational expectations, the first term is

mean independent of information available at t− 1, since that information is incorporated into the

conditional expectation, while the second term is not. Along with the mean independence of the

instruments from the supply shocks, this implies that

E
[
εSj,t−Lj + νj,t−Lj |Zj,t−1

]
= E

[(
Et−Lj

[
Ṗj,t

]
− Et−1

[
Ṗj,t

])
|Zj,t−1

]

.

Rather than making the somewhat implausible assumption that the ADI exactly measures the

total lag, I make the less stringent assumption that

E
[
Et−Lj

[
Ṗj,t

]
− Et−1

[
Ṗj,t

]
|mj ,mt, Zj,t−1, Dj

]
= α0

j + α1DjE
[
Ṗj,t|mj ,mt, Zj,t−1, Dj

]
,

(7)

where Dj denotes the delay index in MSA j. In essence, this assumption means that the ADI,

interacted with realized prices, serves as a proxy variable for the residual forecast error in equation 7

in the sense of Wooldridge (2002, p. 68). One complication is that the ADI may not be redundant in

the main estimating equation; that is, delays may drive up costs on the margin as well as increasing

the forecast error. Consequently, the ADI term in the specifications below will capture both the

measurement error and true costs, and I will not be able to separate the two effects without relying

on nonlinearities in the moment condition.
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I allow the parameters with j subscripts in equation 3, σχj and σηj , to vary by MSA by interacting

the primary observables with WRLURI and its sub-indices. Importantly, I take regulation as

exogenously given, rather than allowing it to respond to conditions in the housing market or even

vary over time. This seems reasonable given that I estimate the model over a relatively short time

span, and levels of regulation likely change slowly over time.27 This simplification is also necessary,

both for data reasons — my measure of regulation is observed only once for each city — and to

keep the model tractable.28 I do, however, use preliminary data from a new round of the Wharton

survey as a robustness check; the results are similar to my preferred estimates.

Since I am trying to identify both the main effects and interactions with the WRLURI indices,

I must specify what functions of the exogenous Zj,t−1 and WRLURI I use as the actual instru-

ment set Ẑj,t−1. Following a common practice in the econometric literature, I run regressions to

get L̂j [logPj,t − β logPj,t+1|mj ,mt, Zj,t−1] and L̂j

[
Kj,t−1

Aj
− βKj,tAj

|mj ,mt, Zj,t−1

]
, the linear projec-

tions of the quasi-differenced log price and housing density onto the fixed effects and the exogenous

industry employment, migration, and lagged density variables. Since the very nature of the model

implies that even identical demand shocks should affect prices in each MSA differently, I use a

separate linear projection for each MSA, which allows the coefficients on the demand shifters to

vary. I then multiply these projections by the relevant components of WRLURI for the specification

in question and use the projections and the interactions as the instruments in a second-step IV

procedure.29

The advantage of this approach is that that it is likely to be more efficient than using an

arbitrary set of functions of Zj,t−1 and WRLURI as instruments, since it directly imposes the

interaction in the instrument set. The disadvantage is that, with exactly as many instruments as

endogenous variables, I cannot directly test the overidentifying restrictions that implicitly underlie

the estimates.

27Glaeser and Ward (2009) argue that regulations in the Boston metropolitan area serve primarily to maintain
historical density levels from as much as a century prior.

28Other authors endogenize zoning in empirical urban models (Saiz 2010, Epple, Gordon and Sieg 2010), while a
voluminous literature considers its determinants in a theoretical setting. See Calabrese, Epple and Romano (2007)
and Fischel (2001) for just two examples of the latter type.

29Note the distinction between this and the typically inconsistent “forbidden regression” (Wooldridge 2002, pp.
236-237).
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Finally, to estimate equation 6 I must either specify or estimate the discount factor β. Iden-

tifying the discount rate has proven to be extremely challenging for other researchers, so I follow

much of the literature and simply assume that β = .95, a commonly accepted value.30 Even after

assuming a value for β, I must still choose how to deal with the compound discount factor βLj ,

since I cannot simultaneously identify it with σχj , σηj , and the variance of the error term. As I have

already argued, assuming values for the construction lag Lj , such as the ADI, is not particularly

attractive given that the true magnitude of the lag may be larger than what is reported, even if

the ADI appropriately captures differences in the lag. Moreover, one of the points of this paper is

to study the effects of increasing the lag. While I must do so indirectly, I certainly do not want to

assume away an empirical question of interest. Instead, I let Lj = g (Dj), where g (·) is a increasing

function relating the ADI to the actual lag. I then divide the entire equation through by βg(Dj)

and estimate the normalized equation.

Applying this normalization and equation 7 to equation 6, specifying the interactions using

WRLURI excluding the ADI (Wxj) and the ADI (Dj), and taking the expectation with respect to

Ẑj,t and the fixed effects yields

E [(logPj,t − β logPj,t+1)− (logCj,t − β logCj,t+1)

− σ̄η + σηWxWxj + σηDDj

βg(Dj) − α1Dj

(
Kj,t−1

Aj
− βKj,t

Aj

)

− σ̄χ + σχWxWxj + σχDDj

βg(Dj) − α1Dj

log

 Ij,t
Aj−Kj,t−1

1− Ij,t
Aj−Kj,t−1

− β log

(
Ij,t+1

Aj −Kj,t

)
+mj +mt|Ẑj,t,mj ,mt

]
=0.

(8)

This moment condition could form the basis of an exactly identified nonlinear Generalized

Method of Moments (GMM) estimator with fixed effects. To simplify estimation a bit, take the

30The results are not sensitive to alternatives in the range of .90 to .99.
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partial derivative of the coefficient on the investment term with respect to Wxj ,

∂

(
σ̄χ+σχWxWxj+σ

χDDj

β
g(Dj)−α1Dj

)
∂Wxj

=
σχWx

βg(Dj) − α1Dj

> 0

, and with respect to Dj ,

∂

(
σ̄χ+σχWxWxj+σ

χDDj

β
g(Dj)−α1Dj

)
∂Dj

=
σχD

βg(Dj) − α1Dj

−

(
σ̄χ + σχWxWxj + σχDDj(

βg(Dj) − α1Dj

)2
)

(
βg(Dj) log (β) g′ (Dj)− α1

)
>0.

These partial derivatives indicate that the coefficient on the investment term is (weakly) increasing

in Wxj and in Dj , as is the coefficient on the capital stock term.31 I assume away any interaction

and linearize the compound parameters in these variables, yielding:

E [(logPj,t − β logPj,t+1)− (logCj,t − β logCj,t+1)

−
(
σ̄η + σηWxWxj + σηDDj

)(Kj,t−1

Aj
− βKj,t

Aj

)

−
(
σ̄χ + σχWxWxj + σχDDj

)log

 Ij,t
Aj−Kj,t−1

1− Ij,t
Aj−Kj,t−1

− β log

(
Ij,t+1

Aj −Kj,t

)
+mj +mt|Ẑj,t,mj ,mt

]
=0.

(9)

I use this moment condition as the basis for a linear-in-parameters IV estimator.

31The denominator in both expressions, βg(Dj) − α1Dj , must be positive because the expectation of the forecast
error, conditional on the instruments, is bounded by the conditional expectation of the quasi-differenced price term.
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6 Reduced-Form/Myopic Model Estimates

Before presenting estimates from the full model, I provide some basic regression and IV results

that generally follow equation 9 but ignore forward-looking behavior on the part of landowners.

These results illustrate the patterns in the data in a transparent way and mimic typical approaches

from the existing literature that can be compared with my structural estimates. They can also be

interpreted as a reduced form of the structural model, although they are misspecified in that they

ignore forward-looking behavior.

To specify these regressions, I start with moment condition 9 and make several simplifications.

First, and most importantly, I assume that agents are myopic and do not take into account future

prices or investment, which means setting all the one-period-ahead terms (βPj,t+1, e.g.) to zero.

Second, I use the fact that log
(

p
1−p

)
≈ log (p) for small p to simplify the investment term, since

the probability of investment for any slot is never more than 0.002 in my data. Third, I isolate the

investment term on the left-hand side and linearize the resulting price coefficient so as to parallel

typical regression models relating investment and price. These changes yield the equation

log

(
Ij,t

Aj −Kj,t−1

)
=
(
λ̄P + λPWxWxj + λPDDj

)
(logPj,t − logCj,t)

+
(
λ̄K + λKWxWxj + λKDDj

) Kj,t−1

Aj
+mj +mt + ζj,t,

(10)

in which I have appended ζj,t as an error term that is mean zero across j and t by assumption.

Ignoring any endogeneity concerns about ζj,t for the moment, I estimate several versions of

equation 10 using ordinary least squares; the results are presented in table 3. In the first column,

I regress the log investment probability on log price and the housing density, with no interactions,

while including MSA and year fixed effects to pick up persistent differences in MSA supply-side

conditions or nationwide year-specific shocks. The fixed effects allow me to focus on the effects of

transitory city-specific shocks.

On average across years and MSAs, I find that a 1 percent increase in price is associated with

a 1.35 percent increase in investment, with a standard error of just 0.04 percent. Meanwhile, a 1

percentage point higher density is associated with 1.77 percent less investment. Since the stock is
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less than 5 percent of developable area in almost all MSAs and shifts quite gradually within a given

MSA, most of the rapid changes in investment are attributable to changes in price rather than in

density.

In principle, I would like to take advantage of the RS Means construction cost data in both

these reduced-form estimates and the structural model. Column (2) in table 3 shows the results

of including log construction costs as a covariate; unsurprisingly, higher construction costs reduce

investment, all else being equal. The coefficients on construction costs and price are quite similar,

as the model suggests is appropriate. The downside of the RS Means data is that they are only

available for a subset of MSAs — less than half the sample of MSA years that are otherwise available.

Since including construction costs in the regression leaves the coefficients nearly unchanged from

an unreported version of column (1) that uses the same sample as column (2), I omit them from

subsequent regressions.

The final two columns in the table break apart the supply elasticity and density coefficient and

examine how they vary across cities. In column (3) I interact both log price and the density with the

top-line WRLURI (“Regulation”), which I standardize so that it has a mean of zero and standard

deviation of 1 across MSAs. The first line of column (3) indicates that a city with an average level of

regulation has an elasticity of 1.69, while each 1 standard deviation increase in regulation reduces

the elasticity by 0.46. The interaction of regulation with the density is also highly statistically

significant and very large relative to the mean effect of -0.46, indicating that more regulation may

cause cities to “fill up” more quickly. Even without a direct structural interpretation or clear

identification, the sheer size of the effect of regulation on these estimates is noteworthy.

Finally, column (4) repeats the regression from column (3) but separately interacts log price with

the Approval Delay Index (“Delays”) and a version of WRLURI that excludes the ADI (“Regulation

excl. Delays”). While the two sub-indices are highly correlated, the first should correspond to an

increase in the amount of time it takes to prepare for and acquire a building permit, while the

second should capture all other cost-shifting regulations imposed by local governments, such as

density restrictions, open space requirements, and so forth. Delays are likely to affect the supply

elasticity by increasing the forecast error and thus lowering the correlation between logPj,t and
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Et−Lj [logPj,t], while the “everything else” measure works by raising costs faster in regulated areas

as investment increases.32

Both measures have a substantial effect on the estimated supply elasticity. A city with average

delays and average other regulation has an estimated elasticity of 1.72, while 1 additional standard

deviation of delay reduces the elasticity by 0.37 and a 1 standard deviation increase in other

regulation reduces the elasticity by 0.15. These estimates suggest that delays may be a particularly

important component of regulation, at least with respect to supply elasticity. Interestingly, the

magnitude of the density coefficient is decreasing in delays but much more sharply increasing in

other forms of regulation. Cities seem to be “filling up” more quickly when there is more regulation,

but not when there are more delays alone. This result is comforting, since it suggests that the

“everything else” measure of regulation may in fact be picking up density limitations or other

related factors.

6.1 IV

While enlightening, these parameter estimates are potentially inconsistent — even ignoring dynamic

considerations — for two reasons: First, as noted above, unobserved supply shocks will be correlated

with realized prices, which are determined in equilibrium. Second, the error in the forecast of logPj,t

is correlated with that term by construction, since it must be mean independent of the expectation

under the rational expectations assumption.

To deal with these issues, I employ migrationj,t−1 and industryj,t−1, as discussed in section 5

above. I project logPj,t onto these two variables separately for each MSA and then interact the

projection with WRLURI and its sub-indices as needed to identify the interaction terms. Table 4

uses this IV method to re-estimate the specifications from table 3. The elasticity estimates in the

first line are smaller in magnitude than those from the previous table, while the effects of rising

density are similar.33

32The changes in forecast error are similar in spirit to a measurement error problem, but in this case I am interested
in estimating the changes in the coefficient that result from differential forecast error magnitudes across cities, rather
than in simply overcoming a threat to identification. See the discussion in section 5 above.

33The projection instrument is very highly correlated with house prices conditional on the fixed effects, so there is
a valid “first stage”.
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The pattern of the interaction terms in columns (3) and (4) are essentially the same as in

table 3. While the coefficients are somewhat smaller in magnitude, they are larger relative to the

main effect of log price, that is, the elasticity of a city with average regulation. These estimates

thus suggest, if anything, an even larger role for regulation in determining relative elasticities. In

addition, non-delay regulation continues to have a very large effect on the stock/area coefficient,

while the ADI interaction is positive, again suggesting that delays affect the elasticity of supply

with respect to price, while other forms of regulation lead to higher prices as cities use up available

land.

With or without IV, the coefficients estimated in this section are economically sizable. An

elasticity of about 1 means that a typical change in log investment of 0.19 must drive up costs

on the margin by 19 percent for the housing market to be in equilibrium in a given year.34 At

the mean house price in my sample of about $140,000, that price increase is $26,600. For a city

like San Francisco, which has an approval delay six months above the mean — about 2.2 standard

deviations — the predicted supply elasticity using column (4) is about 0.25. This corresponds to

an increase in marginal costs of more than 75 log points, which would more than double the price

level, for each 0.19 increase in log investment. In equilibrium, households are unwilling, even in

San Francisco, to pay such high prices, which means that actual investment tends to be much lower

than the national average.

These results are informative but only suggestive of the true cost parameters and elasticities

because they do not take dynamics into account. A priori, we should expect the true elasticities

— the response of supply to a one-time increase in price — to be substantially higher than these

myopic estimates, since price changes are positively autocorrelated (Glaeser and Gyourko 2007).

That is, a price increase in a given city today is likely to be followed by another increase tomorrow,

so what appears to be a small response of investment to a large increase in price may simply be a

rational response to price dynamics. This effect is precisely what I find in my empirical results, as

I discuss in the next section.

34The 0.19 figure is the mean across MSAs and years of the absolute change in log investment.
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7 Structural Model Estimates

Having established the basic correlations in the data, I now turn to estimating the structural

parameters of the dynamic supply model. Table 5 shows estimates for several variants of equation

9.35 Column (1) is a baseline specification that does not allow for any MSA-level heterogeneity, so

the reported parameter values are averages across high- and low-regulation cities.

The value for the parameter σ̄χ on the first line of the table can be interpreted as the percentage

increase in the cost of constructing a single house, on the margin, that results from a 1 percent

increase in investment in a given MSA and year. Increasing investment by 1 percent leads to 0.42

percent higher costs. We can take the reciprocal of this figure to get a supply elasticity of about 2.4.

Holding other factors fixed, increasing log investment by 0.19, which is the mean across MSAs and

years of the absolute change in log investment, increases costs on the margin by about 8 percent.

For an average home in my sample, which is worth about $140,000, that corresponds to an increase

in price of more than $11,000.

The effect of using up land — that is, increasing the capital stock relative to the developable

land area in a city — is less important for annual investment, but still relevant over the long run.

The estimated value of σ̄η in column (1) indicates that a 1 percentage point increase in the housing

density increases costs by about 337 log points. While this parameter is superficially larger than

the marginal cost parameter, it can only be interpreted once we note that the overall housing stock

changes quite slowly. Even booming cities like Las Vegas and Phoenix in the mid-2000s add only

a couple hundredths of a percentage point to their densities in a given year. The mean absolute

change in density across all MSAs and years is about 0.006, and a shift of that magnitude changes

costs by 2 percent, or about $3,000 for the average home.36

Column (2) shows that the estimated parameter values are similar when the RS Means con-

35As with the reduced-form results above, all of the specifications in this section easily pass the Stock and Yogo
(2003) tests for weak instruments.

36Over the long run, however, density or land scarcity can be an important factor in a city’s growth, as argued by
Saiz (2010). For example, Las Vegas more than quadrupled its housing stock between 1980 and 2010, bringing its
density (relative to Manhattan) up from 0.1 to nearly 0.5. Ignoring the level of regulation and holding all else equal,
this would suggest an increase in costs and prices on the margin of 125 log points, which is several hundred thousand
dollars.

28



struction cost is included in quasi-differenced form, as in equation 9.37 The coefficient on the cost

term is small and statistically indistinguishable from zero, despite the fact that our null, based on

the theory, should be a coefficient of 1. The likely explanation for this result is that the construction

cost measure is highly smoothed relative to reality, so that the quasi-differencing and inclusion of

fixed effects remove nearly all of the relevant variation.

Regulation plays a more interesting and important role. In column (3) I interact the marginal

cost and density parameters with the top-line WRLURI measure of regulation. As in the reduced-

form/myopic estimates, we can see a strong effect of regulation, raising marginal costs — including

via delays and the forecast error — and by extension reducing the price elasticity of supply. Since

the regulation measure is standardized to have mean zero, the first line of the column indicates

that an MSA with an average level of regulation has a marginal cost increase of 0.40 percent for

each 1 percent increase in investment.

For a city with regulation 1 standard deviation above the mean, this figure rises to 0.49 percent.

Multiplying this by 0.19, which is a typical change in log investment, and the average price of

housing in my sample yields an increase of $13,000 per house on the margin. For a very regulated

and expensive city like Boston, with a standardized WRLURI value of about 2 and average house

price of $250,000, the same increase in investment would increase costs by $28,000, more than a

tenth the price of the house.38

In column (4) I break apart regulation into its two subcomponents, delays and the “everything

else” measure that comprises all the WRLURI sub-indices except the ADI. For a city with average

delays and average “other” regulation, a 1 percent increase in investment raises the marginal per-

house cost of construction by 0.34 percent. Approval delays of 1 standard deviation more than the

mean city increase this effect by 0.07, with a standard error of 0.01.39 A single standard deviation

37The small changes in the coefficients are due almost entirely to the reduction in sample size when construction
costs are included.

38Of course, part of the reason that house prices in Boston and similar cities are so high in the first place is
regulation, as well as costs that rise with density. Some of the effect on the price level would show up in fixed costs,
that is, per-house construction costs that do not change with the level of investment. I include MSA fixed effects
here to focus on elasticities and then decompose the effects of regulation on those fixed-effect terms below.

39As discussed extensively above, the delays can affect this cost parameter through three complementary channels:
increases in marginal costs, reductions in the compound discount factor, and increases in landowners’ and developers’
forecast error, all of which reduce the elasticity of supply. The data available do not allow me to separate these
channels in a convincing fashion.
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in other regulation (σχWx) has a smaller effect on marginal costs, 0.03.

The density parameters for an average regulation city in columns (3) and (4) are larger than

the un-interacted parameter in column (1), though the standard errors are larger as well. I find a

negative effect of regulation in column (3), but the standard error is large enough that I cannot

draw any meaningful conclusions. In column (4) I find a fairly sizable negative relationship between

the ADI and density-related costs, along with a significant positive effect of regulation excluding

delays. This pattern is similar to the one found in tables 3 and 4, although the surprising negative

effect of delays on costs now outweighs the positive effect from other regulation. Importantly, we

can still conclude that cities have higher costs, and thus lower investment, when they have larger

housing stocks relative to their land areas.

In table 6, I show how marginal costs vary across cities with different measured levels of regu-

lation. I use the estimated parameter values for the marginal cost of investment in column (4) of

table 5 and the regulation levels reported in table 2 to impute the marginal cost of investment in

each city. The first column shows the approximate percentage effect on marginal costs of a 19 log

point increase in investment, which is a good yardstick because it is the average absolute change in

investment across all MSAs and years in my sample. The second column multiplies this percentage

by the average real house price in each city over the period from 1984 to 2008.

Cities with substantial levels of regulation, either via approval delays (the ADI) or other com-

ponents of WRLURI, have much higher marginal costs of investment. For example, the effect of

the 19 log point change in investment is substantially higher in New York and San Francisco (both

about 11 percent) than in Atlanta (less than 8 percent) and Houston (less than 7 percent). When

translated into dollar terms, these differences are much more sizable, since average prices are higher

in regulated coastal cities than in relatively unregulated cities in the interior. Prices in Atlanta

would rise by just $13,000 in response to a 19 point baseline change in investment, while in New

York they would shift more than twice as much and in San Francisco nearly four times as much.

The response of landowners and builders to these higher marginal costs is to reduce their

increases in investment in response to demand-driven price increases. As a result, price elasticities

are lower on the coasts than in the interior. For example, I estimate that the price elasticity of
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supply in both New York and San Francisco is about 1.7, while the elasticity in Atlanta is 2.4 and

in Houston 2.8. These elasticity estimates are larger than have been previously estimated in the

literature because they explicitly account for dynamics, as discussed at the end of the previous

section.

7.1 Robustness Checks

In estimating the structural model, I make a series of sometimes restrictive assumptions. In this

section, I check the robustness of my results to alternative specifications, which are shown in table

8. Each column is a re-estimate of column (3) from table 5 — the model with WRLURI interacted

with the marginal cost and density parameters — using a different specification.

Arguably the most important assumption underlying the estimates is the exogeneity of reg-

ulation, in particular WRLURI and its subcomponents. I rely in particular on the notion that

regulation is constant over time, or at least that it does not shift in response to house price volatil-

ity or supply elasticities over the relatively short horizon of my data.40 Although I cannot directly

test this assumption without better data and substantially complicating the model, I am able to

provide suggestive evidence using preliminary data from a new version of the Wharton survey.41

Using the raw data from the new survey, I compute versions of WRLURI and the ADI following

as closely as possible the original methodology.42 I find that the 2010 WRLURI and ADI are highly

correlated with the 2005 versions, with correlation coefficients at the MSA level of about 0.7 and

0.6 respectively. This is despite the fact that there are likely to be some errors in the preliminary

new data that have not yet been corrected and despite different samples of responding jurisdictions

within the MSAs.

To further examine the importance of possible changes in regulation over time, we can turn to

column (1) of table 8, which replaces my standard (2005) regulation measure with the one derived

from the 2010 survey. The results are quite similar to those in column (3) of table 5. For a city

40Regulation that responds to or is otherwise endogenous to long-run price or investment levels would bias my
estimates of the fixed costs, not the marginal cost parameters, thanks to the MSA fixed effects.

41I am grateful to Joe Gyourko and Anita Summers for making the raw 2010 survey data available to me prior to
their publication.

42Changes in the survey questions between rounds necessitate some judgment in this process.
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with average regulation, a 1 percent increase in investment raises costs on the margin by 0.38

percent, essentially the same as previously estimated. More importantly, the interaction effect with

WRLURI is still 0.09. The effect of increasing density on costs is now even larger than in table 5,

although there is a counterintuitive negative effect of regulation on density-related fixed costs.43

Since it is this σχW term that is vital in explaining differences in elasticities across housing

markets, it is greatly comforting that the estimate is similar using the new round of the survey.

While this is not definitive proof that regulation has not endogenously changed over the sample

period, it goes some way toward easing these concerns.

In column (2) I estimate the model including the RS Means construction cost data in the price

term, essentially normalizing the coefficient on costs to be one, as theory suggests. This has minimal

effects on the estimates. The final three columns examine the possibility that particular forms of

within-sample correlation in supply shocks render one or more of the instruments endogenous. For

example, if the supply shocks εSj,t follow a first-order autoregression over time, then I cannot use

the first lag of the quasi-differenced density term as an exogenous shifter of the contemporaneous

value.44 In column (3) I instead use the second lag,
Kj,t−3

Aj
− βKj,t−2

Aj
, as part of Zj,t−1. The results

are also similar to those in column (3) of table 5, although the main effect of density is larger and

the interaction with regulation is negative.

Alternatively, supply shocks could be spatially rather than temporally correlated. This could

render my migration-based demand shifter endogenous, since it relies on the assumption that supply

shocks in a given city are uncorrelated with outflows from other cities, which are presumably

affected by their own supply shocks. In column (4) I drop migrationj,t entirely and rely solely

on the industryj,t to get exogenous variation in house prices. In column (5), I use an alternative

version of the migration variable in which, for the calculation of the value for MSA j, I exclude

MSAs that are less than 100 miles away from j. In both cases, I find estimates very similar to

column (3) of table 5, which should alleviate concerns that the variable could be correlated with

43As in the reduced form results described above, putting the new version of WRLURI in a simple regression or
IV specification indicates that more regulation drives up costs and reduces investment faster as density increases.

44Other than through this channel, serial correlation does not in general affect the consistency of IV or GMM esti-
mates, although it does require an adjustment to the standard errors beyond making them robust to heteroskedasticity
(Hayashi 2000, pp. 406-412).
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local supply shocks that are spatially autocorrelated at relatively close distances.

8 Model Simulations

Although the estimated parameters are interesting in themselves, one of the most valuable parts of

estimating a structural model is the ability to perform simulations of various scenarios, including

counterfactuals. In this section I show the results of a series of simulations, first varying parameters

one at a time to demonstrate the effect and then showing how the estimated parameters for two

cities — San Francisco and Atlanta — imply substantially different amounts of volatility, even given

the exact same demand shocks.45 Although it is quite likely that the volatility of shocks also varies

across cities, this approach allows me to isolate the role of supply constraints.

One way of showing how cities with different supply constraints respond to demand shocks is

to plot their impulse response functions. In figure 8 I plot the normalized impulse responses of San

Francisco and Atlanta to a one-time demand shock of about 3 percent, which is the average standard

deviation of the demand innovations in the MSA vector autoregressions estimated above. Since

the demand shock follows an AR(1) process with a coefficient of 0.8, the shock decays relatively

slowly over time. In addition, a follow-on direct effect on house prices results from the effect of the

demand shock on the future user cost shock.

Although the shocks in each city are identical, the resulting rent and price processes are very

different.46 By construction, rents in both cities jump by the same amount, but they drop back

much more quickly in Atlanta. Meanwhile, house prices in Atlanta jump by less than in San

Francisco and are back to baseline 10 years after the shock. In San Francisco, prices take 20 years

to return to baseline.

The explanation for this difference is evident in the bottom two panels: In equilibrium, the

initial investment response in percentage terms appears much the same in the two cities, but

because average investment is so much higher in Atlanta, the same percent increase means a much

larger increase in the size of the capital stock. Consequently, by year 10 the stock in Atlanta has

45I discuss my solution method and demand estimates in the appendix.
46To ensure comparability in the figures, I show the price, investment, and capital stock paths relative to their

steady states.
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increased by about 0.4 percentage points, compared with 0.1 percentage points in San Francisco.

This difference explains why rents return to baseline faster and why prices never jump as much in

the first place, since the supply response is built into expectations.

An alternative way to examine dynamics is to repeatedly simulate the model with randomly

drawn house price shocks and examine the moments of the resulting price and investment paths.

The first four lines of table 9 present basic results for a series of simulations with different elasticities

but identical demand-side conditions. As a baseline I use a one-year lag and the marginal cost of

investment (σχj from equation 6) implied for a city with regulation at the MSA median by the results

in column (4) from table 5. The second line (“Low Regulation”) uses the fixed and marginal costs

implied for cities at the 10th percentile of delays and the all-else regulation measure, while the third

line (“High Regulation”) uses the costs implied for cities at the 90th percentile of those measures.

The fourth line uses a two-year lag but no direct changes in marginal costs. In each case I simulate

the model using the same 100 randomly chosen 25-year paths for the demand shock and then

average the relevant moment across the simulations.47

Comparing the first and second lines of the table, we can see that lowering regulation reduces the

standard deviation of log prices relative to the baseline.48 Volatility by this measure is about 0.003

lower, or one-tenth of baseline volatility. Since the demand shocks are identical in each case, these

differences must result from differences in investment. The standard deviation of log investment

is appreciably higher when regulation is lower because the elasticity is higher: Landowners and

builders are able to respond to demand shocks by increasing investment and the capital stock when

demand is high, thus attenuating the effect of the shocks on price.

The converse is true when regulation is higher. Comparing the third line with the second,

we can see that going from the 90th percentile of regulation to the 10th percentile reduces the

volatility of prices by 20 percent, because it decreases the volatility of investment by about 30

47To focus on short-run effects, I ignore any effects from changing the housing density, that is, the degree of land
scarcity.

48In these simulations, I do not allow the steady-state capital stock to change to reflect the level of new investment.
To do so I would have to take a stand on the effect of house prices on migration between cities, which is a very
complicated issue that is outside the scope of my study. Consequently, although I include mean prices for comparison,
the values shown here are not representative of the full general equilibrium effects on price levels of changing supply
constraints.
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percent. Moving from a one-year lag to a two-year lag, in the fourth line, has similarly sized effects

on price and investment volatility. I find these sizable differences despite conservatively choosing

parameters such as the elasticity of demand and the persistence of demand shocks.

The next two lines of the table emphasize that the level of new investment also matters for

volatility, even keeping marginal costs the same. To do this, I vary the amount of available land

while holding constant all other parameters, including the steady-state capital stock. In the “More

Land” line, I change fixed costs in the supply equation consistent with a city having 10 percent

more developable land, and thus a lower density. My estimates imply that this has a dramatic

effect on the level of new investment, which doubles relative to the baseline. As a result, even

though the elasticity of supply is only slightly lower, volatility is nearly 10 percent less than in

the baseline. Conversely, when there is 10 percent less land area (the “Less Land” line) than the

baseline, investment is much lower and volatility is as high as when marginal costs are high or the

lag is longer.

The last two lines of the table show how real-world differences in regulation can can dramati-

cally affect housing markets. I simulate the model using the supply parameters estimated for San

Francisco and Atlanta, relying on their differing values of the ADI and the other components of

WRLURI, as well as their quite different densities. The model matches the price and investment

levels almost perfectly, thanks to the fixed effects. The effects on volatility are more interesting.

The highly regulated and geographically constrained city (San Francisco) has much higher and

more volatile prices than the less regulated and constrained city (Atlanta). In relative terms, invest-

ment is actually more volatile in San Francisco, precisely because prices are also more volatile, but

because average investment is so low relative to the capital stock, even large changes in investment

have a minimal feedback effect on price. This reemphasizes the point that both the elasticity — in

percentage terms — and the average level of new investment matter for volatility.

Since I completely shut down migration by holding the steady-state capital shocks constant

and use identical demand shocks, rather than allowing different demand shock variances across

cities, these results are not fully realistic, but the implications are striking and well in accord

with the patterns that we observe empirically. In terms of volatility, the standard deviation of log

35



house prices in Atlanta from 1984 to 2008, after regressing out the time trend, was about 0.08.

The comparable figure for San Francisco was 0.16, twice as large. Looking back at table 9, we

see that even this limited simulation can explain a percentage difference in volatility of about 45

percent. The fact that the model does a very poor job of replicating the level of price volatility on

average across cities is quite interesting. It may relate to the puzzle, noted above, that house price

volatility is much greater than rent volatility. Nevertheless, it is the relative values that matter for

my purposes, and the simulations confirm that the model predicts wide disparities in volatility in

markets with different supply-side parameters.

9 Conclusion

After the experience of recent years, the importance of volatility in house prices and housing

investment is abundantly clear. Understanding the factors that govern differences in volatility

requires knowledge of both the demand and supply sides of the housing market. Although we have

learned a great deal about the importance of the supply side in recent years, much more research

is needed.

This paper makes several contributions to our knowledge of housing supply and the role it plays

in determining house price volatility. Building on previous work, I develop a dynamic structural

model of housing supply that is grounded in a basic microeconomic optimization problem. I then

use the model to carefully identify key structural supply-side parameters and show how they vary

across metropolitan areas with observed levels of regulation. I find that regulation of all kinds

causes delays and adds tens of thousands of dollars to the cost of a house on the margin in a

more regulated city relative to a less regulated one. I also find that geographic constraints on land

availability, which increase the effective density of cities when holding the capital stock constant,

increase costs substantially and lower average investment.

In contrast with the existing literature, I am able to use the theory and data to explore the

mechanisms by which these constraints affect volatility. Delays and higher marginal costs reduce

supply elasticities and, as a consequence, amplify the volatility of house prices. My simulations

suggest that, even in a model with no inter-metropolitan migration and identical demand shocks,
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observed regulation can explain a large fraction of the difference in volatility of house prices between

a highly regulated city like San Francisco and a relatively unregulated one like Atlanta. Although

housing regulation has deep and complex roots, this conclusion has important policy implications,

both for local governments and for private groups such as homeowners’ associations that often

oppose new construction.

One caveat to my conclusions is that I do not study the benefits of housing supply regulation to

any of the involved parties. Homeowners have a strong incentive to protect their property values,

both by limiting the exposure of their homes to potentially noxious adjacent uses — the traditional

justification for zoning — and by preventing nearby new construction that could, in effect, compete

with their own homes and drive down prices when they look to sell in the future. The effect of

regulation on price levels can thus be seen as a transfer to current homeowners from prospective

future home buyers, who face higher prices, and some current landowners, who may be prevented

from fully developing their land and selling at the market price. Although we have started to get a

handle on the costs of regulation, future research should focus on quantifying the benefits, without

which it is difficult to evaluate the welfare effects.

That said, what is striking about volatility is that it negatively affects current owners as well as

prospective future ones. This volatility particularly hurts homeowners looking to cash out — often,

the old — and younger, less wealthy buyers seeking their first homes. Other owners may be at

least partially hedged, to the extent that the price of their current home covaries with the price of

their desired future one (Sinai and Souleles 2005, Paciorek and Sinai 2010), but even hedged owners

face problems if they end up “underwater” on their mortgages (Ferreira, Gyourko and Tracy 2010).

Thus, one important implication of this paper is that future work on the distributional effects of

housing supply regulation should concentrate not only on its effects on price levels but also on

volatility.

References

Arcidiacono, Peter and Robert A. Miller, “CCP Estimation of Dynamic Discrete Choice

Models with Unobserved Heterogeneity,” 2008. mimeo.

37



Aruoba, S. Boragan, Jesus Fernandez-Villaverde, and Juan F. Rubio-Ramirez, “Com-

paring Solution Methods for Dynamic Equilibrium Economies,” Journal of Economic Dynam-

ics & Control, 2006, 30, 2477–2508.

Bartik, Timothy J., Who Benefits From State and Local Economic Development Policies?, W.E.

Upjohn Institute for Employment Research, 1991.

Bishop, Kelly C., “A Dynamic Model of Location Choice and Hedonic Valuation,” 2008. mimeo.

Blanchard, Olivier Jean and Lawrence F. Katz, “Regional Evolutions,” Brookings Papers

on Economic Activity, 1992, 1, 1–75.

Calabrese, Stephen, Dennis Epple, and Richard Romano, “On the Political Economy of

Zoning,” Journal of Public Economics, 2007, 91, 25–49.

DiPasquale, Denise, “Why Don’t We Know More About Housing Supply?,” Journal of Real

Estate Finance and Economics, 1999, 18 (1), 9–23.

Emrath, Paul, “Property Taxes in the 2000 Census,” Housing Economics, 2002, pp. 16–21.

Epple, Dennis, Brett Gordon, and Holger Sieg, “A New Approach to Estimating the Pro-

duction Function for Housing,” 2010.

Ferreira, Fernando, Joseph Gyourko, and Joseph Tracy, “Housing Busts and Household

Mobility,” Journal of Urban Economics, 2010, 68 (1), 34–45.

Fischel, William A., The Homevoter Hypothesis: How Home Values Influence Local Government

Taxation, School Finance, and Land-Use Policies, Harvard University Press, 2001.

Flavin, Majorie and Takashi Yamashita, “Owner-Occupied Housing and the Composition of

the Household Portfolio,” American Economic Review, 2002, 92 (1), 345–362.

Gallin, Joshua Hoyvat, “Net Migration and State Labor Market Dynamics,” Journal of Labor

Economics, 2004, 22 (1), 1–21.

38



Glaeser, Edward L. and Bryce A. Ward, “The Causes and Consequences of Land Use Regu-

lation: Evidence from Greater Boston,” Journal of Urban Economics, 2009, 65 (3), 265–278.

and Joseph Gyourko, “Housing Dynamics,” 2007. mimeo.

, , and Albert Saiz, “Housing Supply and Housing Bubbles,” Journal of Urban Eco-

nomics, 2008, 64 (2), 198–217.

, , and Raven E. Saks, “Why Have Housing Prices Gone Up?,” American Economic

Review Papers and Proceedings, 2005, 95 (2), 329–333.

, , and Raven Saks, “Why is Manhattan So Expensive? Regulation and the Rise in

House Prices,” Journal of Law and Economics, 2005, 48 (2), 331–370.

Gyourko, Joseph, Albert Saiz, and Anita Summers, “A New Measure of the Local Reg-

ulatory Environment for Housing Markets: The Wharton Residential Land Use Regulatory

Index,” Urban Studies, 2008, 45 (3), 693–729.

and , “Construction Costs and the Supply of Housing Structure,” Journal of Regional

Science, 2006, 46 (4), 661–680.

, Christopher Mayer, and Todd Sinai, “Superstar Cities,” 2006. mimeo.

Hansen, Lars Peter and Kenneth J. Singleton, “Generalized Instrumental Variables Estima-

tion of Nonlinear Rational Expectations Models,” Econometrica, 1982, 50 (5), 1269–1286.

Hanushek, Eric A. and John M. Quigley, “What is the Price Elasticity of Housing Demand?,”

Review of Economics and Statistics, 1980, 62 (3), 449–454.

Hastie, T.J. and R.J. Tibshirani, Generalized Additive Models, Chapman and Hall/CRC, 1990.

Hayashi, Fumio, Econometrics, Princeton University Press, 2000.

Himmelberg, Charles, Christopher Mayer, and Todd Sinai, “Assessing High House Prices:

Bubbles, Fundamentals and Misperceptions,” Journal of Economics Perspectives, 2005, 19 (4),

67–92.

39



Hotz, V. Joseph and Robert A. Miller, “Conditional Choice Probabilities and the Estimation

of Dynamic Models,” Review of Economic Studies, 1993, 60 (3), 497–529.

Huang, Haifang and Yao Tang, “Residential Land Use Regulation and the U.S. Housing Price

Cycle Between 2000 and 2009,” 2010. mimeo.

Keane, Michael P. and Kenneth I. Wolpin, “The Career Decisions of Young Men,” Journal

of Political Economy, 1997, 105 (3), 473–522.

Mayer, Christopher J. and C. Tsuriel Somerville, “Land Use Regulation and New Construc-

tion,” Regional Science and Urban Economics, 2000, 30 (6), 639–662.

Murphy, Alvin, “A Dynamic Model of Housing Supply,” 2010. mimeo.

Notowidigdo, Matthew J., “The Incidence of Local Labor Demand Shocks,” 2010. mimeo.

Paciorek, Andrew, “Zoned Out: Estimating the Impact of Local Housing Supply Restrictions,”

2011. mimeo.

and Todd Sinai, “Does Home Owning Smooth the Variability of Future Housing Consump-

tion?,” 2010. mimeo.

Poterba, James, “Tax Subsides to Owner-Occupied Housing: An Asset-Market Approach,” Quar-

terly Journal of Economics, 1984, 99 (4), 729–752.

Quigley, John M. and Steven Raphael, “Regulation and the High Cost of Housing in Califor-

nia,” American Economic Review Papers and Proceedings, 2005, 95 (2), 323–328.

Rybczynski, Witold, Last Harvest: How a Cornfield Became New Daleville, Scribner, 2007.

Saiz, Albert, “Immigration and Housing Rents in American Cities,” Journal of Urban Economics,

2007, 61 (2), 345–371.

, “The Geographic Determinants of Housing Supply,” Quarterly Journal of Economics, 2010,

125 (3).

40



Saks, Raven E., “Job Creation and Housing Construction: Constraints on Metropolitan Area

Employment Growth,” Journal of Urban Economics, 2008, 64, 178–195.

Shiller, Robert J., “Do Stock Prices Move Too Much to be Justified by Subsequent Changes in

Dividends?,” American Economic Review, 1981, 71 (3), 421–436.

Sinai, Todd and Nicholas S. Souleles, “Owner-Occupied Housing as a Hedge Against Rent

Risk,” Quarterly Journal of Economics, 2005, 120 (2), 763–789.

Stock, James H. and Motohiro Yogo, “Testing for Weak Instruments in Linear IV Regression,”

2003. mimeo.

Topel, Robert and Sherwin Rosen, “Housing Investment in the United States,” Journal of

Political Economy, 1988, 96 (4), 718–740.

Wood, Simon N., Generalized Additive Models: An Introduction with R, Chapman and

Hall/CRC, 2006.

Wooldridge, Jeffrey M., Econometric Analysis of Cross Section and Panel Data, MIT Press,

2002.

A Appendix

A.1 Solution Method

The use of conditional choice probabilities enables me to consistently estimate the dynamic model

of housing supply without fully solving it. But I must solve the model to simulate the behavior of

housing markets under different policy regimes. The model can be numerically solved for a given set

of parameters in one of two ways: perturbation around a deterministic steady state, or fixed point

iteration on the marginal condition, equation 3. Perturbation allows for rapid solution and can be

implemented using standard software, but it may introduce substantial approximation error. Con-

versely, fixed point iteration is very slow but can approximate the solution of the model arbitrarily

well (Aruoba, Fernandez-Villaverde and Rubio-Ramirez 2006). I solve the model numerically using
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fixed point iteration over a finite grid covering Sj,t and then interpolate between grid points using

splines. I calculate expectations by integrating over the relevant distributions using quadrature

methods.

The solution algorithm works as follows: Given a guess of investment I (Sj,t) at each grid point

and a spline interpolation between them, solve for the I (Sj,t) at each grid point that satisfies the

rational expectations assumption and the marginal condition. That is, find the level of investment

that implies a next-period capital stock consistent with prices that justify that amount of invest-

ment, and repeat until convergence. Given a fine enough grid and a flexible enough interpolation,

we can approximate the true I function arbitrarily well. In practice, I can solve the model in a

reasonable amount of time with a state space of no more than two or three dimensions. In the

simulations presented here, I include in the state space only the capital stock, a demand shock and

a shock to the user cost of housing. This allows me to highlight the feedback effects of supply that

serve to dampen the effect of demand shocks on prices.

A.2 Demand Estimation

Before I can actually perform any simulations using the supply side parameters I estimated above,

I must first estimate the demand-side relationship between the capital stock and rents, as well as

estimating a parsimonious time-series relationship for the demand shocks. Estimating the theoret-

ical demand curve, which relates spot housing rents to the capital stock as in equation 1, is not

a trivial endeavor for at least two reasons. First, as noted by Topel and Rosen (1988), demand

shocks likely drive much of the high-frequency variation in investment. Finding variation in the

housing stock that is orthogonal to these demand shocks is thus quite difficult. Second, all of the

available data on rents are for apartments and cover only a relatively small subset of metropolitan

areas.

I have tried various approaches to estimating the underlying demand curve using data on

apartment rents from REIS, a firm that tracks the commercial real estate sector, as well as tenants’

and owners’ equivalent rent data from the Consumer Price Index, which are available for an even

smaller subset of MSAs. In all cases I find substantially higher price volatility than rent volatility,
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a similar phenomenon to that discovered by Shiller (1981) for stock prices. I also find lower inverse

elasticities of demand with respect to rent than with respect to prices. That is, prices are more

responsive to changes in the capital stock than rents. This is hard to square with the usual user cost

equation, as in equation 2, since a transitorily low capital stock (and corresponding high rents and

prices) should induce more construction and lower rents in the future. Prices should thus increase

less in response to a low capital stock than spot rents.

This phenomenon could simply be a result of using inconsistent rent and house price data, or

it could be a sign that this model of housing demand is overly simplistic. Regardless, to match

the observed data as well as possible I relate prices to the size of the capital stock in two steps.

First I estimate an inverse demand curve following equation 1 by using lags of the capital stock

to instrument for the current capital stock, under the assumption that the time dependence of

the demand shocks is limited. I include the log wage, along with MSA and year fixed effects and

MSA-specific time trends, to soak up as much variation as possible in the demand shocks.

log (Rj,t) =φK log (Kj,t) + φn log (nj,t)

+ φw (wagej,t) + φj + φt + φ̇jt+ εDj,t

I start with a least squares regression of this equation and then instrument for the capital stock

at t with its first, second and third lags in turn. Using the first lag as an instrument is valid

if the demand shocks are serially uncorrelated, while the second lag is a valid instrument if the

dependence of the shocks lasts no more than one period, and so forth. Since the correlation of the

time t stock with its own lag is smaller as the length of the lag increases the estimates become

increasingly noisy, although the first stage remains quite strong, with an F statistic well over 10

in all cases. I constrain φK = −φn for the purposes of recovering parameters for simulation, since

the population-to-stock ratio is nearly constant over time within each MSA, as we should expect if

household sizes have been roughly constant within each MSA over the last 30 years.

Table 10 shows the estimates of equation 1. I find inverse elasticities of demand in the range of

-1.7 to -3.0, which implies rent elasticities of demand of -0.33 to -0.60. These figures are in line with
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other estimates in the literature, many of which take quite different approaches to estimation.49

Using the one-lag IV inverse elasticity estimate of -2.18, I back out a value for the intercept of 1

that corresponds roughly to the average MSA in my sample.

The second step is to use the user cost relation in equation 2 to translate movements in rents

into prices. For the remaining variables in equation 2 — interest rate rt, income tax rate τj,t,

property tax rate ωj,t — I use the ex post real interest rate on a conventional 30-year fixed rate

mortgage; state and federal tax rates from the NBER’s TAXSIM database; and property tax data

from Emrath (2002) and the Significant Features of Fiscal Federalism series.50 For γj,t, the risk

premium of owner-occupied housing, I use the Flavin and Yamashita (2002) estimate of 2.0 percent.

To calculate MSA-specific depreciation rates, I subtract the population growth rate in each MSA

from the ratio of investment to the capital stock and take the average. Under the assumption that

the average population-to-stock ratio is constant over time in each MSA, any additional average

growth in the capital stock must be going to replace units lost to depreciation.

Rather than explicitly allow these values to vary in simulation, I instead use the average values

for each MSA and hold them constant over time. For each MSA and year, I then calculate the log

rent implied by (time-varying) house prices and the constant user cost terms. By regressing this log

implicit rent (log
(
R̃j,t

)
) on actual log rent, log population and the log housing stock, I am able to

estimate the direct effect of changes in the capital stock on log prices, apart from the indirect effect

implied by changes in rent.51 This direct effect could be due to endogenous changes in the risk

premium or some effect on expected capital gains outside the relatively simple framework I impose

here. Regardless, the residuals from this regression serve as a “user cost shock” that incorporates

changes in interest rates, risk premia, and taxes in a single variable.

log
(
R̃j,t

)
=πR log (Rj,t) + πK log (Kj,t)

+ πn log (nj,t) + πj + πt + π̇jt+ ψj,t

49See, e.g., Hanushek and Quigley (1980).
50Using the mortgage interest rate here implies that houses are entirely financed by debt, with no downpayment,

but the results are not sensitive to the choice of interest rate.
51This approach requires that the demand shocks follow a first-order Markov process, which is what I assume for

simulation purposes. The estimates of the effect of the capital stock on price conditional on rent are similar if I
include additional lags of rent.
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My estimates of the preceding equation are shown in table 11. As in the inverse demand

estimates, I use various lags of the capital stock to instrument for the current capital stock. I

also include fixed effects and time trends, as well as constraining πK = −πn to ensure stationarity.

Depending on the specification, I find a range of estimates of this direct effect of the capital stock on

house prices. The OLS estimate of the price-stock elasticity in the first column is downward biased

because the capital stock at time t includes contemporaneous new investment, which depends on

prices. For simulation purposes I use -2.27, which is the estimate using the first lag of the capital

stock as an instrument. This is the most conservative choice, apart from the clearly biased OLS

estimate, since the more negative estimates in subsequent columns imply a larger feedback effect

of investment into prices.

Finally, using my estimates of the last two equations, I calculate the demand and user cost

residuals and estimate MSA by MSA first-order vector autoregressions to capture the interdepen-

dence of these shocks over time. I find no strong effects of the lagged user cost shock on the current

demand shock, but I do find large positive effects for the remaining three coefficients. I use the

average VAR coefficients of about 0.8 (demand shock on lagged demand shock), 0.8 (user cost shock

on lagged user cost shock), and 0.5 (user cost shock on lagged demand shock) to parameterize the

demand-side processes.
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Figure 2:
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Figure 3:

−1 0 1 2 3

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

MSA Volatility vs. Regulation

WRLURI (Standardized)

H
ou

se
 P

ric
e 

V
ol

at
ili

ty

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

Solid curve is a penalized regression spline relating standard deviation of detrended log house prices
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deviation one. Dashed curves show +/- two standard errors.
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Figure 5:
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Figure 6:
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Figure 7:
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Figure 8:
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Table 2: WRLURI Values for Top 10 MSAs by Population

MSA WRLURI ADI WRLURI excl. ADI Mean House Price
(j) (Wj) (Dj) (Wxj) (1984-2008)

New York 0.94 2.54 0.13 $306,000
Los Angeles 0.78 1.24 0.48 $329,000

Chicago 0.22 0.74 -0.09 $194,000
Houston -0.27 -0.92 0.08 $119,000
Atlanta 0.19 -0.04 0.26 $161,000

Philadelphia 1.41 1.47 1.18 $169,000
Washington 0.60 1.23 0.27 $244,000

Dallas -0.27 -0.36 -0.21 $146,000
Riverside 0.86 0.75 0.81 $183,000
Phoenix 1.02 0.87 0.95 $160,000

San Francisco 1.21 2.20 0.63 $467,000

WRLURI (Wj), ADI (Dj) and WRLURI excl. ADI (Wxj) standardized to
have mean zero and standard deviation one. Mean house price calculated using
real prices in 2000 dollars.
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Table 3: Myopic Model Elasticity Estimates, OLS

(1) (2) (3) (4)

Log Price 1.35 1.41 1.69 1.72
(0.04) (0.06) (0.05) (0.06)

... x Regulation -0.46
(0.04)

... x Delays -0.37
(0.04)

... x Regulation excl. Delays -0.15
(0.04)

Density -1.77 -1.62 -0.98 -1.31
(0.11) (0.17) (0.14) (0.12)

... x Regulation -0.46
(0.08)

... x Delays 0.39
(0.07)

... x Regulation excl. Delays -0.97
(0.10)

Log Construction Costs -1.49
(0.19)

N 10107 4470 6920 6920
MSA/Year FE Yes Yes Yes Yes
Instrumented No No No No

Dependent variable is the log ratio of permits to available con-
struction “slots”, as defined in the text. Density is lagged by one
period and multiplied by 100. Heteroskedasticity-robust standard
errors in parentheses. Regulation, Delays, and Regulation excl.
Delays standardized to have mean zero and standard deviation
one.
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Table 4: Myopic Model Elasticity Estimates, IV

(1) (2) (3) (4)

Log Price 0.68 0.53 0.84 0.87
(0.07) (0.10) (0.10) (0.10)

... x Regulation -0.32
(0.05)

... x Delays -0.26
(0.05)

... x Regulation excl. Delays -0.09
(0.05)

Density -1.66 -1.21 -0.7 -1.13
(0.13) (0.19) (0.18) (0.15)

... x Regulation -0.50
(0.10)

... x Delays 0.40
(0.10)

... x Regulation excl. Delays -1.03
(0.13)

Log Construction Costs -1.53
(0.22)

N 8831 4218 6090 6090
MSA/Year FE Yes Yes Yes Yes
Instrumented Yes Yes Yes Yes

Dependent variable is the log ratio of permits to available con-
struction “slots”. IV using MSA-level linear projections of log
price onto industry and migration instruments, as described in
the text. Density is lagged by one period and multiplied by 100.
Heteroskedasticity-robust standard errors in parentheses. Regu-
lation, Delays, and Regulation excl. Delays standardized to have
mean zero and standard deviation one.
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Table 5: Structural Model Estimates

Description Parameter (1) (2) (3) (4)

Marginal cost of investment σ̄χ 0.42 0.40 0.40 0.41
(0.02) (0.03) (0.03) (0.03)

... x Regulation σχW 0.09
(0.01)

... x Delays σχD 0.07
(0.01)

... x Regulation excl. Delays σχWx 0.03
(0.01)

Density σ̄η 3.37 4.20 4.34 5.32
(0.32) (0.45) (0.54) (0.67)

... x Regulation σηW -0.35
(0.24)

... x Delays σηD -1.64
(0.43)

... x Regulation excl. Delays σηWx 0.63
(0.19)

Construction costs 0.05
(0.07)

N 8831 4044 6090 6090
MSA/Year FE Yes Yes Yes Yes
Instrumented Yes Yes Yes Yes

IV estimates of variants of Equation 9 using MSA-level linear projections onto
industry and migration instruments, as described in text. Heteroskedasticity-
robust standard errors in parentheses. Regulation, Delays and Regulation excl.
Delays standardized to have mean zero and standard deviation one.
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Table 6: Estimated Cost Parameters and Elasticities for Top 10 MSAs by Population

Marginal Cost of Investment
MSA Percent Dollars Elasticity

New York 11.10 $34,000 1.71
Los Angeles 9.69 $32,000 1.96

Chicago 8.68 $17,000 2.19
Houston 6.71 $8,000 2.83
Atlanta 7.93 $13,000 2.39

Philadelphia 10.43 $18,000 1.82
Washington 9.54 $23,000 1.99

Dallas 7.23 $11,000 2.63
Riverside 9.28 $17,000 2.05
Phoenix 9.53 $15,000 1.99

San Francisco 10.99 $51,000 1.73

Increase in cost of a house on the margin after an increase in log
investment of 19 log points, which is the average absolute change
in log investment across all MSAs and years. Calculated using
parameters shown in column (4) of Table 5. See text for details.

Table 7: Fixed Costs and Regulation

(1) (2)

Regulation 0.75
(0.05)

Delays 0.72
(0.05)

Regulation excl. Delays 0.23
(0.05)

(Intercept) -0.18 -0.23
(0.05) (0.04)

N 168 168
R2 0.58 0.75

Regression of standardized fixed costs from
model in column (4) of Table 5 on WRLURI
measures of regulation, as described in text.
Standard errors in parentheses. Dependent
variable, Regulation, Delays, and Regulation
excl. Delays standardized to have mean zero
and standard deviation one.
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